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Abstract: The intensive industrial development in special economic zones, such as Thailand’s
Eastern Economic Corridor, increases energy consumption, leading to an imbalance of energy
supply and a challenge for energy management. Electricity consumption at a local level is crucial
for utility planners to manage and invest in the electrical grid. With this study, we propose an
electricity consumption estimation model at the district level using machine learning with publicly
available statistical data and built-up area (BU), area of lit (AL), and sum of light intensity (SL) data
extracted from Landsat 8 and Suomi NPP satellite nighttime light images. The models created from
three machine learning algorithms, which included Multiple Linear Regression (MR), Decision Tree
(DT), and Support Vector Regression (SVR), were compared. The results show that (1) electricity
consumption is highly correlated with SL, AL, and BU; and (2) the DT model demonstrated a better
performance in predicting local electricity consumption when compared to MR and SVR with the
lowest error rate and highest R2. The local government in developing countries with limited data and
financial resources can adopt the proposed approach to benefit from utilizing commonly available
remote sensing and statistical data with simple machine learning models such as DT (regression
method) for sustainable electricity management.

Keywords: electricity consumption; locally prediction model; remote sensing; decision tree;
regression method; machine learning; nighttime imagery

1. Introduction

Nowadays, energy has become an essential support for economic growth and is a
rapid indicator of human living standards. Electricity is one of the primary energy sources
and has a solid relationship with the degree of country development and quality of life
in modern society [1]. Energy consumption can be explained by many factors, including
economic growth, non-agricultural GDP, population, and urbanization [2]. Consequently,
many pieces of previous research have focused on how energy consumption relates to
Human Development Index (HDI) at the national level in developed countries [3–5]. These
studies aim to sustain the welfare of developed countries through energy demand and
its footprint. At the local scale, electricity consumption plays a significant role for utility
planners to forecast load and invest in the electrical grid. Therefore, estimating electricity
consumption enhances the understanding of human activities in the region and helps
authorities determine the appropriate electricity supply [6].

The electricity consumption can be estimated by combining socioeconomic indicators
as well as population density, human mobility, and electronic devices per household to
predict electricity consumption [6–8]. However, the in-depth electricity load curve data
are often unavailable in developing countries, such as Thailand. In such a situation, other
proxies such as nighttime light (NTL) data from satellite images and geo-informatic and
socioeconomic data are widely applied to estimate electricity load and consumption at
the local level. For example, NTL has been applied as a proxy for an electricity-related
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indicator such as electricity demand [9], household electrification [10], and monitoring
of electricity consumption at different spatial and temporal scales in developing (low-
middle income) countries, such as China, India, and others [11]. NTL was founded to
be an essential indicator of human activities and settlements (urbanization) in spatial
dimensions [12]. In addition, spatial information, as well as land-use types, were also
utilized to classify the consumer types for forecasting energy consumption when a history
of consumption was not available [13]. Mei et al. [6] proposed to use socio-demographic
information (demographic, economic, and sociological statistics at a local scale) as an
essential supplement for spatially estimating electrical consumption from source zones to
target zones with no or little historical consumption data.

Various prediction techniques have been used to estimate electricity consumption with
the aforementioned proxies such as Linear Regression, Spatial Regression, and Machine
Learning Algorithms (MLAs). MLA-based prediction models can identify patterns and
react to changes in time series data which are essential for decision makers to understand
trends. The models are trained and re-trained to generate a final model that builds upon
optimizing the desired objective to predict its output. Moreover, MLAs are suited for
complex problems because they emphasize model testing and adjusting [14]. Tso and
Yau [15] compared Regression Analysis with two MLAs, including Decision Tree (DT) and
Neural Network (NN), for forecasting the energy consumption of data centers based on
weather conditions. They concluded that DT and NN models performed slightly better than
traditional regression models and more complex predictors. In addition, Least Squares
Support Vector Machines (LS-SVM) were suggested for accurate and quick prediction
of electricity consumption in Turkey [16]. In a study conducted in France, the Spatial–
Temporal Model provided excellent performance when estimating electricity consumption
at a small temporal scale with socio-demographic and client information [6].

Additionally, Xiao et al. [17] developed a Spatial–Temporal Geographically Weighted
Regression Model to simulate electricity consumption in China at the provincial level and
achieved goodness of fit of 99% and relative error of less than 5%. The MLAs with a linear
regression approach showed satisfactory accuracy in energy consumption forecasting at
data centers based on weather information from remotely sensed data [18]. Furthermore,
the new hybrid Convolutional Neural Network (CNN) model illustrated excellent per-
formance in forecasting residential and commercial buildings’ electricity consumption
estimation [19]. Yue et al. [20] integrated the nighttime light data with the spatial econo-
metric model to quantify energy consumption in China at a regional level. Their result
illustrated that the Spatial Durbin Model (SDM) provided high accuracy of electricity
consumption at provincial and prefectural scales. However, these previous studies focused
on estimating the electricity consumption either at a very coarse country level or a very
detailed property scale [21]. The countrywide value is impractical for local management,
while the fine-scale value requires intensive inputs that are not readily available in many
developing nations. Therefore, research on estimating the electricity consumption at a
medium scale (district level) remains limited but should be pursued to support the lo-
cal electricity supply management and quantify the socio-economic impact of intensive
industrial development policy (i.e., human well-being).

Thailand’s Eastern Economic Corridor (EEC) includes Rayong, Chonburi, and Chacho-
engsao provinces (Figure 1) and is a particular example representing how the developing
country use policy strategy to drive regional development. The EEC development policy
aims to create opportunities for investors to participate in developing utilities, infrastruc-
ture, and public transportation. Thailand’s government expected that EEC development
would raise the Gross Provincial Product (GPP) and the country’s economy and improve
the quality of life of people who lives in the vicinity by connecting the emerging global
economy. With the country’s rapid development and intensive promotion of the indus-
trial economy, the demand for electricity consumption has increased. The total electricity
consumption in the domestic sector rose from 25,525 GWh in 2012 to 29,074 GWh in
2018 [22]. Concurrently, Thailand must diversify the domestic energy source, improve
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energy efficiency, and promote community participation in energy management, following
Sustainable Development Goal (SDG) 7 to ensure access to affordable, reliable, sustainable,
and modern energy for all. Moreover, the local governments of the key district (Rayong,
Chonburi, and Chachoengsao provinces) play an essential role in managing the limited
resources of electricity to ensure the EEC’s sustainable growth.

Figure 1. The study site (Eastern Economic Corridor, Thailand).

The EEC’s electricity consumption is heterogeneous due to the differences in geo-
graphic and socioeconomic factors. Rayong and Chonburi are the top GPP generators
in Thailand because of their early industrial and tourism development from the Eastern
Seaboard policy in 1990. Conversely, Chachoengsao has different economic activities,
mainly focusing on agricultural and cultural tourism with medium GPP. Therefore, the
electricity consumption estimation at a medium scale (district level) is required to support
local government decision making.

In 2015, Phamornchantaramast S. et al. forecasted electricity demand in Chonburi
province based on classified land-use types from Landsat 5 and 7. They used the built-up
area to estimate the electricity demand per square kilometer. Their result showed that
a medium correlation of 0.47 existed between predicted electricity demand and actual
electricity consumption [23]. The electricity consumption in the districts close to industrial
and tourism development areas was underestimated. Using Thailand’s EEC as a case study,
this paper aimed to build a suitable estimation model for electricity consumption at the
district level by employing and comparing three MLAs (MR, DT, and SVM). Due to the
limitation of the electricity load and electricity consumption database within the study
area, we extracted nighttime light and built-up area from the remotely sensed data. We
used them along with general socioeconomic data, such as population, household, and
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population density, as predictors of electricity consumption for 30 districts in the chosen
region, based on the number of available data points. The detailed methodology, including
dataset, pre-processing, prediction models, and validation approaches, was introduced in
the next section. The results were then presented, and the findings were discussed. In the
end, a conclusion was provided.

2. Materials and Methods
2.1. Study Flowchart

The flowchart in Figure 2 presents the processing steps used in this study. First, the
remote sensing data were organized through Google Earth Engine (GEE) platform and
processed to extract the built-up area, annual average light intensity, and area of lit from
Landsat 8 Operational Land Imager (OLI), Suomi NPP Visible Infrared Imaging Radiometer
Suite (VIIRS) Day and Night Band (DNB), respectively. Second, the sum of light intensity
(SL) using zonal statistic tools was calculated for each district through ArcGIS online. All
datasets were then prepared for model building after cleansing and normalizing. The
electricity consumption estimation models included MR, DT, and SVR were conducted in
RapidMiner® software. The feature selection and the optimization of model parameters
were also controlled.

Figure 2. Flowchart of the study.
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2.2. Data
2.2.1. Socioeconomic Data

The National Statistic Organization (NSO) of Thailand provides the general statistic
from country to subdistrict level. The population and household data at the district
level within EEC regions were downloaded from their website. Pre-processing was then
performed to calculate and round up the population density for each district. The number
of households showed a gradual increase over time. The population growth is radically
fluctuating because of the intensive mobility of both industry and tourism laborers in
the EEC’s industrial regions. The commuter population increased from 800,000 people in
2010 to 1,000,000 people in 2019, influencing urbanization and the energy consumption
rate [24]. The population and households dramatically increased from 2017 to 2018 after
implementing a special economic development policy in 2016 [25]. GPP has been regarded
as a strong indicator of electricity consumption [21]. We then gathered the 2012 to 2018
Gross Provincial Product per Capita from the website of the Office of the National Economic
and Social Development Council (NESDB), Thailand.

2.2.2. Remotely Sensed Data

This study used NTL data extracted from Visible Infrared Imaging Radiometer Suite
Day-Night Band (VIIRS-DNB) products and Landsat 7 and 8 ETM images from 2012 to 2018.
The time series data were processed on Google Earth Engine (GEE, https://earthengine.
google.com accessed on 24 June 2021), a cloud-based computing platform that allows
users to conduct geospatial data analysis by providing various computation, analyzation,
and visualization. GEE becomes an effective and constructive tool with various satellite
images and geospatial datasets [26,27]. GEE demonstrated high potential in the large-scale
temporal urbanization analysis process. Pu et al. [27] utilized Landsat time series data and
computation algorithms in GEE to map urban areas and achieved an accuracy of 0.8 to 0.9.

In this study, we adopted a method from previous research with processes based on
the GEE platform. These include (1) extracting light intensity and area of lit from the annual
mean composite of monthly VIIRS-DNB, (2) computing built-up indices from the annual
median composition of cloud-masked Landsat 7 and 8 Surface Reflectance (SR) datasets,
and (3) classifying the built-up areas from the derived indices using adaptive thresholding
method (Otsu’s threshold) [28]. The built-up area extraction accuracy of 2012 and 2016
was assessed using 500 random sampling points from the national land-use dataset and
virtual ground truth from Landsat 7 and 8 images each year. The overall accuracy of the
build-up areas for 2012 and 2016 were 78% and 85% with kappa index values at 74% and
82%, respectively.

The Landsat 7 (2012) and Landsat 8 (2013–2018) dataset was requested from the GEE
platform, filtering by year, processing cloud mask, and selecting band 1 to 7. Each year of
Landsat data has been reduced by median (derived from a histogram) for pre-compute the
Landsat indices. We then adopted the built-up area extraction method from the previous
paper, using the Modified Built-up Index (MBUI), which employs Otsu’s thresholding
technique, and integrates with the nighttime light data [29]. The MBUI is calculated by
Equation (1).

MBUI = BUI −MNDWI, (1)

where:
BUI = NDBI − NDVI,
NDBI = (SWIR−NIR)

(SWIR+NIR) ,

NDVI = (NIR−Red)
(NIR+Red) , and

MNDWI = (Green−SWIR)
(Green+SWIR) .

Considering the histogram of MBUI that represents some bimodal pattern, we choose
Otsu’s method to classify the built-up area. Otsu’s thresholding is a fast and straightforward
method to determine an optimal threshold value from an image histogram. The optimal
threshold is given when the between-class variance is maximized [30]. Otsu’s thresholding

https://earthengine.google.com
https://earthengine.google.com
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has been used in several pieces of research [31–33]. The sample of the result is presented in
Figure 3c.

Figure 3. The examples of remotely sensed data extraction (Landsat 8 and NPP VIIRS DNB) of 2018 include: (a) area of lit,
(b) sum of light intensity (nW cm−1sr−1), and (c) built-up area.

We employed GEE algorithms to request and export the monthly VIIRS-DNB dataset
(2012–2018), which removes cloud cover using the VIIRS cloud mask product (VCM)
and correct for stray light [34]. We calculated the annual average light intensity for each
year, except the year 2012, which we calculated using the average light intensity from
six-monthly datasets (June to December 2012) based on data availability. Then, we adopted
the zonal statistic tool in ArcGIS Pro to identify the sum of light intensity in each district
polygon from light intensity images. Zonal Statistics is a tool to calculate each zone defined
by a zone dataset, based on values from another value raster dataset. A single output value
(the sum of light intensity) was computed for every zone (district).

Furthermore, the lit area was extracted using the thresholding method to differentiate
each district’s dark and bright areas. The threshold value was calculated for each year
from 2012 to 2018 from the annual mean composite of VIIRS dataset by applying Otsu’s
method. The threshold of the lit area was found to be between 19.25 to 20.93 nW cm−1sr−1.
The samples of built-up area, sum of light intensity, and area of lit maps extracted from
remotely sensed data are presented in Figure 3.

2.3. Data Preparation for Machine Learning Models

The collected social and economic databases contain unnecessary information, a wide
range of missing values and noises, and inconsistencies for prediction models. Before
conducting any statistical analysis, the cleansing process, such as eliminating irregularities
and outlying data, is necessary to ensure meaningful data and the reliability of model
outputs [35]. Our cleaning method employed RapidMiner® Software by using an imputing
operator to estimate missing values through learning models. Then, we normalized all
variables using the statistical method (z-score). The equation is shown in Equation (2).

x′ =
x− µ

σ
, (2)
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where x′ is normalized x, µ is the mean, and σ equals the standard deviation. The z-score is
a common normalization technique. It preserves the original distribution of the data and is
less influenced by outliers. After the cleansing and normalizing processes were completed,
the descriptive statistics of each variable were calculated (Table 1).

Table 1. Descriptive statistics of variables.

Mean STD.
Error SD. Min Max

Total Electricity
Consumption 1 (TEC) 847.98 78.60 1054.48 6.73 4293.21

Population (TP) 75,633.17 5003.59 67,130.15 4580.00 294,682.00
Household (TH) 38,892.08 3224.76 43,264.70 1903.00 199,851.00

Sum of Light 2 (SL) 6682.55 674.82 9053.65 49.40 41,146.70
Area of Lit 3 (AL) 50.75 5.32 71.34 - 324.81

Built up Area 3 (BU) 79.51 4.92 66.05 1.74 264.27
Population Density (PD) 216.80 15.97 214.25 32.00 1130.00

Area 3 445.46 21.79 292.34 7.07 1422.90
Year 2014.50 0.13 1.71 2012 2017

Gross Domestic Product 4 (GDP) 592,073.89 57,014.05 764,923.78 3265.83 4.08 × 106

Unit: 1 GWh; 2 nW cm−1sr−1; 3 km2; 4 million Baht.

Next, a data splitting strategy was applied to randomly split the available dataset
into three groups for the ML tasks (training, validating, and testing) [36,37]. We split the
data from the 2012–2018 dataset (100%: n = 210) into three sets: (1) training (60%: n = 126),
(2) validating (20%: n = 42), and (3) testing (20%: n = 42). The training set was used for
learning and estimating parameters of the model, while the validation set was used to
evaluate the model and for model selection. Lastly, the testing set was a set of examples
used to assess the model’s predictive performance.

2.4. ML Model Setting

ML-based prediction models consist of four types of resources: dataset, training
process, model, and prediction. The workflow was to use training data during the training
process for model creation. This model with data input was used to establish the predictions.
The activation functions were first employed for linear and nonlinear models to train an
ML model, depending on the specific ML-based prediction models. Therefore, the ML
was trained by using simple frameworks. The tweaking parameters as hyperparameter
optimization were applied to improve the trained ML by adjusting model parameters
to achieve the best results. In addition, for ML model construction, the feature selection
method was necessary for identifying a subset of only relevant input variables to be used.
The variable selection process was beneficial in reducing the overfitting and training time
while improving accuracy [38]. In this study, we experimented based on two assumptions:
(1) the electricity consumption prediction model is linear, the variables are of a normal
distribution, and (2) there is non-linearity in the variables. Hence, we applied Multiple
Regression (MR), Decision Tree (DT), and Support Vector Regression (SVR) to deal with
linear and nonlinear functions. The above process was conducted in RapidMiner® Software
in five steps (see Appendix A Figure A1).

Step one: The basic processing is composed of three tasks, including (1) primary
pre-processing data, which started from loading the dataset and performed some basic
pre-processing tasks such as defining target columns, removing unnecessary columns, and
unifying value types, and then filtering examples. (2) The next task was creating a training
and validation set by splitting data into a 60:40 ratio for performance calculation. (3) Then,
the essential feature engineering was applied to replace missing and infinite value. This
also includes data encoding and removing columns with too many nominal values.

Step two: The automatic feature selection and modeling. The feature selection was
automatically performed to arrange and optimize the number of predictor variables used
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by each model. This feature selection supports multi-objective feature selection and defends
a balance correlation value between 1 and 0. The multi-objective evolutionary algorithm
was operated to find the best feature sets to build models for the feature selection process.
Each feature set was Pareto-optimal concerning complexity vs. model validation. The
complexity was calculated based on the feature set where each feature in the set contributes
complexity one. The selected feature sets were determined based on the optimal trade-offs
between complexity and model errors. Afterward, we trained the models and applied
automatic hyperparameter tuning (parameter optimization).

Step three: The transform validation and scoring data were performed, preparing data
for validation and the scoring process in the next step.

Step four: Scoring and validation processed by applying the trained models on
validation and scoring dataset. In this step, we applied automatic hyperparameter tuning,
such as optimizing parameters with three k-folds validation, to estimate the statistical
performance of a learning model. Then, we calculated MAE and RMSE to determine the
performance of prediction models.

Step five: The final prediction models were created by training models with the same
parameters on the combined training and validation dataset.

2.4.1. Multiple Regression (MR)

Multiple Regression is a statistical technique of linear regression that predicts the
value of a response (dependent) variable based on two or more explanatory (indepen-
dent) variables. It is one of the most commonly used statistical techniques and has been
adopted in many research studies that require continuous output results [18]. The multiple
regression equation was shown in the following form:

y = b1x1 + b2x2 + . . . + bnxn + c (3)

where y denotes the total electricity consumption (TEC), and each xi is the feature selected
from the statistical variables in Table 1, such as total population (TP), household (TH),
sum of light (SL), etc. bi (i = 1, 2 . . . n) are the regression coefficients. c is the independent
identically distributed normal error, representing the deviation of the predicted value from
the observed value of TEC.

The fundamental assumptions of MR include the linear relationship between TEC and
the selected features (e.g., total population (TP), total household (TH), sum of light (SL)).
The MR model parameters are often estimated with the training data using the ordinary
least squares approach by minimizing the sum of differences between predicted and
observed values. After the model is built, it can be validated and assessed with the testing
dataset to measure the accuracy of the prediction models. The coefficient of determination
(R2) is often used to measure how much of the variation in the dependent variable can be
explained by independent variables. In this study, we inputted the normalized variable
to RapidMiner® Software. Then, the automatic feature selection function was applied to
select the optimized prediction variables for the best fitting model.

2.4.2. Decision Tree (DT)

A Decision Tree is a non-parametric supervised learning method that repeatedly di-
vides a set of training data into smaller subsets based on tests of one or more variables
to create a prediction model for the target value [39]. Unlike many other statistical ap-
proaches, the DT (regression tree) does not have the requirements of value distribution or
the independence of the variables from one another [40]. The model is trained by learning
based on decision rules from features. The collection of nodes intends to decide on values
connected to estimate a numerical target value (regression approach). The selected variable
will optimally separate to reduce the error following the criterion. The new nodes are
repeatedly built until the estimated numerical value meets the target (criteria).

The sampling of new nodes is repeated until the stopping criteria are met. A prediction
for the class label “attribute” is determined depending on the majority of “examples”. The
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criteria reach this leaf during generation, while an estimation for a numerical value is
obtained by averaging the values in a leaf.

Our DT model was built by determining optimal parameters using threefold cross-
validation. We then trained by setting the splitting criterion as Least Square (LS) error,
which minimizes the squared distance between the average values in the node regarding
the actual value. The LS is one of the standard methods to build a regression tree. It can
improve the computational efficiency result that deals with the nominal and numerical
variable tree [41]. The least square error criterion can be expressed as follows:

1
n

n

∑
i
(yj − r (β, xi))

2 (4)

where n is the sample size, xi is a data point, and r(β, xi) is a regression model for each
pair of (xi, yi). The model criterion was set for 20 maximum depths. We also applied auto-
prepruning to control the parameters of minimal gain = 0.05, minimal leaf size = 2, minimal
size for split = 4, and a number of prepruning alternatives = 3 were used as stopping criteria.

2.4.3. Support Vector Regression (SVR)

A Support Vector Regression (SVR) is a non-parameter supervised machine learning
model. The SVR function is derived based on training data to predict numerical values
that find the best fitting line in the hyperplane with the maximum number of points [42].
The training attributes are defined by feature vectors x selected from the set of all features
X (as in Table 1) and numerical label y ∈ R, which represents the prediction of TEC [43].
SVR is a regression function that is linear to the kernel function K(xi, x), trying to capture
the non-linear relationship between selected features. Specifically, the prediction function
is expressed as:

∑
i∈SV

(αi − α∗i )K(xi, x) + b (5)

where x denotes TEC, xi represents the prediction variables in Table 1 (such as TP, AL, SL,
Bu, and GDP), αi and α∗i are the Lagrange multipliers, and b is an intercept. This kernel
function K(xi, x) was set up to map the nonlinear function to the flattest function in a
feature space. We also applied the polynomial kernel, which is suitable for the normalized
training dataset. The polynomial kernel is defined by:

K(xi, x) = (1 + (xi·x))d (6)

where d is the polynomial degree, and the kernel degree parameter specifies it. We input
the normalized variables into RapidMiner® Software for this study following five steps
of building the prediction model. We applied the radial kernel with gamma = 0.001 and
cache = 200. The hyperparameter C, which controls the relaxation of the error minimization
problem, was set as 100. The convergence epsilon was set at 0.001 with a max iteration
at 100,000. SVR constructed a hyperplane or set of hyperplanes in a high- or infinite-
dimensional space, which can be used for regression prediction with a fast algorithm and
sufficient results.

2.5. Model Evaluation and Validation

To determine the accuracy and appropriate selection of the prediction method, we
used two statistical measures, (1) mean absolute error (MAE) and (2) root mean square
error (RMSE). A mean absolute error (MAE) measures the average magnitude of the errors
in a set of predictions without considering their direction and the average of absolute
differences between prediction and actual observation over the test samples with equal
weight on all individual differences (Equation (7)) [19].

MAE =
1
n

n

∑
j=1

∣∣yj − ŷj
∣∣ (7)
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where n denotes the number of samples. |ŷi − yi| are the absolute residuals between the
actual values and the predicted values, where yi is the observed value for the observation
and ŷi is the predicted value.

This research also applied a root mean square error (RMSE) to measure the standard
deviation of residuals. RMSE is the standard deviation of the prediction errors (residuals)
and can measure residual dispersal. A basic formula of RMSE is shown below:

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(8)

3. Results
3.1. Variable Correlation

The Pearson correlation coefficients were calculated to determine the correlation
among variables. The result is illustrated in Table 2. Total electricity consumption (TEC),
a dependent variable in this study, appears highly correlated with sum of light intensity
(SL), area of lit (AL), and built-up (BU) area. Moreover, the top three correlated variables
are also highly correlated among themselves. The total population and household showed
moderate correlation coefficients to TEC, while other variables had low correlation values
(see Figure 4). The last row in Table 2 presents the weight of each variable to the prediction
(dependence variable) by using a correlation calculation. The higher the weight of an
attribute, the more relevant it is considered. These results helped the variables (feature)
selection process to find the optimal variables, building the models by automatically
selecting the appropriate candidate features by their information gain concerning the
prediction results [44].

Table 2. The correlation coefficients between variables.

Year TP TH SL AL BU PD Area GDP TEC

Year 1

TP 0.10 1

TH 0.14 0.95 1

SL 0.12 0.75 0.83 1

AL 0.04 0.79 0.87 0.96 1

BU 0.03 0.84 0.84 0.89 0.89 1

PD 0.00 0.65 0.64 0.34 0.46 0.38 1

Area 0.00 0.17 0.09 0.13 0.04 0.22 −0.32 1

GDP 0.07 0.68 0.75 0.97 0.90 0.83 0.27 0.14 1

TEC 0.08 0.56 0.63 0.83 0.78 0.77 0.15 0.12 0.83 1

3.2. Variables Selection

An automatic feature selection process was used to tune down the number of predictor
variables employed by the built models. Adjusting the number of parameters is a significant
part of the model building process, which helps improve the processing time of each
prediction model. RapidMiner® Auto Model’s Feature selection used a multi-objective
evolutionary algorithm to find the best predictor variables (feature sets) concerning the
trade-off between complexity and model accuracy [45]. The complexity was determined
based on the set of features where each variable in the set contributes complexity. The
result of each feature set is Pareto-optimal concerning these two dimensions (complexity
and model accuracy). In this study, each model selected a specific feature set using an
automatic feature selection process. The result of the feature selection process (predictors
for each model) is illustrated in Table 3.
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Figure 4. The scatter plot and correlation between predictors and prediction variable (sample of the year 2012 and 2018);
(a) TEC and BU and (b) TEC and SL.

Table 3. Electricity consumption estimation predictors and their weight in each model.

Variables
Models

Year TP TH SL AL BU GDP PD Area

Multiple Regression (MR) 0.12 0.86 0.49
Decision Tree (DT) 0.51 0.20 0.004 0.09

Support Vector Regression (SVR) 0.03 0.04 0.08 0.06 0.05 0.06

3.3. Estimation Models and Validation

The MR model is presented in Equation (9). The variables, including AL, BU, and
area, were selected from the feature selection method. The MR model provided the lowest
accuracy compared to DT and SVR (see Table 4).

TEC = 0.44 (AL) + 0.37(BU) + 0.04(Year) + 0 (9)

Table 4. The performance of prediction models.

Multiple Regression
(MR) Decision Tree (DT) Support Vector

Regression (SVM)

MAE 0.33 0.12 0.20
RMSE 0.51 0.24 0.39

R2 0.81 0.95 0.94
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The DT model was created from five attributes (one target attribute, TEC, and four
predictor attributes, BU, TH, PD, and area) and their decision label value (see Appendix B
Table A1). Total household (0.393) was the highest weight attribute, followed by an area
of lit (0.192) and population (0.005). Figure 5b illustrates the DT prediction chart, which
led to the best performance in electricity prediction among three models (see Table 4) with
an RMSE of 0.24, MAE of 0.12, MSE of 0.06, and the highest R2 of 0.95. The 210 training
datapoints trained the final SVR prediction model with four attributes: TP, TH, SL, BU, and
PD (see Figure 5c). The kernel function of each variable was present by w(xi) in Figure 5c,
and the offset is 0.655. As shown in Table 4, the SVR prediction model had the second-best
prediction performance.

Figure 5. The scatter plots of predicted values versus actual values from different models, including
(a) Multiple regression, (b) Decision Tree, and (c) Support Vector Regression.
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A comparison of the prediction models’ performance is illustrated in Table 4, in which
DT provided the best performance with the lowest MAE, RMSE, and highest R2, followed
by SVR and MR. Therefore, DT achieved the highest accuracy and was chosen to estimate
the district-level electricity consumption in Thailand’s EEC.

4. Discussion
4.1. High Correlation of Geographic Variables to Electricity Consumption

This study applied the socioeconomic survey data (TH and TP) and extracted ge-
ographic data from remote sensing images (SL, AL, and BU). The extracted data from
satellite images including SL, AL, and BU presented a very high correlation to electricity
consumption (0.77 ≤ R ≤ 0.83) compared to socioeconomic data (TH and TP), which
provided R = 0.6. However, the GDP also provided a high correlation to total electricity
consumption at 0.83. These results suggest that the variables extracted from remote sensing
products could estimate the electricity consumption at the district level. Table 2 illustrates
that SL was highly correlated with TEC. Moreover, the built-up area was a common predic-
tor, chosen by all models through the feature selection method (see Table 3). Hence, we
conclude that the remotely sensed extraction data could estimate electricity consumption
at a district level.

4.2. Remotely Sensed Data—High Performance and Ease of Extraction

The past study confirmed that the nighttime light retrieved from the satellite could
quantify electricity consumption at a provincial scale [1]. Moreover, we found that the lit
area, sum of light intensity, and built-up area could also estimate the electricity consumption
at the district level. These geographic variables played a considerable role in prediction
models by providing high weight (see Table 3). For example, the built-up area was the
second-highest weight (0.2) in the DT prediction model, and the area of lit was the highest
weight (0.86) in the MR prediction model. However, the built-up area was more complex
in terms of extraction methodology, and it was challenging to control the accuracy of data
extraction results. Figure 6 illustrated that the built-up area is highly correlated to the area
of lit and sum of light intensity. For this reason, the nighttime light intensity was a better
proxy indicator to estimate the electricity consumption at the district level.

4.3. Model Complexity and Accuracy, Key Caveats, and Limitations

There were various methods to estimate electricity consumption in past research.
However, because of the limitation of the number of datasets, we selected three MLAs,
including Multiple Regression (MR), Decision Tree (DT), and Support Vector Regression
(SVR), to predict the district’s electricity consumption. From Figure 5, it is clear that DT’s
predicted values showed the closest one-to-one relationship to the actual values, which
indicates that the DT model provided the best performance with the lowest MAE, RMSE,
and the highest R2. On the other hand, MR and SVR were more likely to underestimate the
actual values with weaker goodness of fit than the DT model.

The regression method in machine learning may be challenged by the complexity of
predictor variables, which could generate a high bias model. The increasing complexity
is possibly caused by the decreasing of model accuracy. Thus, we need to optimize both
complexity and accuracy, avoiding a more complex and over-fitting model. Figure 7
compares the trade-off between the model complexity and the error rate of MR, DT, and
SVR models.
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Figure 6. The correlation between geographical variables (remotely sensed data extraction); (a) BU and SL; (b) BU and AL.

Figure 7. The optimal trade-offs between complexity and error of each estimation model.

The MR provided less complexity but the highest error, while DT provided the best
performance with moderate complexity but the lowest error. In addition, the model pa-
rameter adjusting was a key to the predicting result. We let each model find the optimal
parameters that provided the best training result. However, the prediction models may
still need more adjusting in the details of each hyperparameter. The most critical hyper-
parameters are (1) stopping criteria and (2) pruning method, which control the balancing
between model accuracy and complexity. Consequently, we need to balance complexity
and accuracy, improving the model performance.

In addition, DT is a complex model which tends to overfit. We can avoid this problem
by setting the constraints on model parameters and pruning. The constraints on tree size
should be set by fine-tuning the hyperparameters such as (1) minimum samples for a node
split and a terminal node, (2) maximum depth of the tree (vertical depth), and (3) maximum
feature to consider for a split. The tree pruning should be optimized between the size of the
learning tree (horizontal grow) and predictive accuracy, then measured by cross-validation
set for best optimizing performance. However, based on the number of data points in this
study, our DT model was a small tree with a lower risk of overfitting than a large tree. The
overfitting problem should be considered when applying the model to a larger dataset in
further study.
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The model accuracy can be impacted by (1) the quality of the input dataset and (2)
model adjusting parameters. Principally, the input data validation may be applied to
improve the model accuracy. This study only validated the accuracy of remote sensing
data extracting results of 2012 and 2016. We used 500 random sampling points from the
national land-use dataset, verifying them with virtual ground truth from Landsat 7 and
8 images. In this work, the accuracy of extracting data for 2012 and 2016 was 78% and
85%, respectively, which was adequate for managing electricity on the district grid in EEC,
Thailand, without the dwelling dataset. The more detailed validation of remote sensing
data extraction should be conducted because the accuracy of the data extraction process
will affect the result of the prediction model. However, if we can improve the extraction
accuracy, the models should lead to more accurate predictions. In addition, we assumed
that there are no invalid data in the socio-economic dataset following the standard of data
source (The National Statistic Office, Thailand). However, this may not be true.

Despite the usefulness of this study’s generated models and findings, we acknowledge
that some caveats should be mentioned. First, this study’s available data were somewhat
limited due to data availability in both spatial and temporal domains. The data were
available only from 2012 to 2018, covering a small number of districts (30 districts) in
the study area. Further study still needs to utilize the hyperparameter tuning of the
Decision Tree model in the following metrics: the total number of nodes, total number of
leaves, tree depth, and number of attributes used to optimize model accuracy. Moreover,
experimenting on different geographic characteristic areas will enhance understanding of
the prediction model at the diverse remotely sensed dataset.

5. Conclusions

This study compared three estimation models for electricity consumption at the district
level in Eastern Thailand and evaluated the usefulness of remotely sensed data extraction
as well as a general socioeconomic dataset as model features. The result revealed that
the Decision Tree (regression method) algorithm is the best-fitting model with the highest
accuracy at the lowest MAE, RMSE, and fastest total time than the other models. The
findings from this study also highlighted the benefits of utilizing remotely sensed extracted
variables, including lit area, sum of light intensity, and built-up area. Specifically, the
nighttime light data were significant for estimating electricity consumption at the district
level. They can help understand human activity and reflect the economic status and its
impact in the industrial parks and neighborhood areas. These data also represent an
excellent proxy indicator to measure economic activity, which is valuable for developing
countries with a limited budget and data, such as Thailand.

Nevertheless, the nighttime light data capture an artificial light that varies by the
intensity of the source of light generated by the bulbs. LEDs have increasingly replaced
regular light bulbs in the past decade because they require less energy and provide the
same brightness. The changing of light bulb types may reflect the utilization of nighttime
light intensity for estimating electricity consumption. Starting from 2015, Thailand’s
government has promoted LED usage within the 20 years of saving energy plan, which is
still ongoing [46]. Thus, this paper, covering the period from 2012 to 2018, assumed little
impact from the policy and has yet to consider the effect of different light sources.
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Appendix A

Figure A1. The process of creating a Decision Tree from RapidMiner® Software.
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Appendix B

Table A1. The description of the Regression Tree Model (Decision Tree).

TH > −0.148
| BU > 2.255
| | BU > 2.619: 2.732 {count = 4}
| | BU ≤ 2.619
| | | PD > 0.317
| | | | BU > 2.419
| | | | | PD > 0.417: 2.385 {count = 2}
| | | | | PD ≤ 0.417: 2.301 {count = 3}
| | | | BU ≤ 2.419: 2.072 {count = 3}
| | | PD ≤ 0.317: 1.505 {count = 2}
| BU ≤ 2.255
| | PD > −0.441
| | | BU > 1.644
| | | | TH > 1.683: 1.340 {count = 4}
| | | | TH ≤ 1.683: 1.029 {count = 3}
| | | BU ≤ 1.644
| | | | TH > 0.011
| | | | | Area > −0.591
| | | | | | PD > −0.374
| | | | | | | PD > 0.524
| | | | | | | | BU > 0.510: 0.320 {count = 6}
| | | | | | | | BU ≤ 0.510: 0.076 {count = 7}
| | | | | | | PD ≤ 0.524: 0.857 {count = 2}
| | | | | | PD ≤ −0.374
| | | | | | | TH > 0.034: −0.160 {count = 2}
| | | | | | | TH ≤ 0.034: −0.190 {count = 2}
| | | | | Area ≤ −0.591: −0.217 {count = 9}
| | | | TH ≤ 0.011
| | | | | PD > −0.008
| | | | | | BU > −0.133
| | | | | | | TH > −0.084
| | | | | | | | BU > 0.113: 1.192 {count = 3}
| | | | | | | | BU ≤ 0.113: 1.038 {count = 5}
| | | | | | | TH ≤ −0.084
| | | | | | | | PD > 0.282: 0.904 {count = 2}
| | | | | | | | PD ≤ 0.282: 0.836 {count = 2}
| | | | | | BU ≤ −0.133: 0.108 {count = 3}
| | | | | PD ≤ −0.008
| | | | | | BU > 0.644
| | | | | | | TH > −0.058: 0.256 {count = 2}
| | | | | | | TH ≤ −0.058: 0.150 {count = 2}
| | | | | | BU ≤ 0.644: −0.218 {count = 5}
| | PD ≤ −0.441
| | | TH > 0.176
| | | | PD > −0.534: 3.203 {count = 2}
| | | | PD ≤ −0.534
| | | | | TH > 0.436: 2.740 {count = 2}
| | | | | TH ≤ 0.436: 2.473 {count = 2}
| | | TH ≤ 0.176: 1.705 {count = 2}
TH ≤ −0.148
| TH > −0.306
| | PD > −0.369
| | | PD > −0.302
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Table A1. Cont.

| | | | PD > 0.117: −0.089 {count = 3}
| | | | PD ≤ 0.117: 0.046 {count = 2}
| | | PD ≤ −0.302: −0.459 {count = 2}
| | PD ≤ −0.369
| | | PD > −0.388: 0.402 {count = 2}
| | | PD ≤ −0.388
| | | | PD > −0.397: 0.168 {count = 2}
| | | | PD ≤ −0.397: 0.057 {count = 3}
| TH ≤ −0.306
| | BU > −0.877
| | | Area > 0.778
| | | | BU > −0.632
| | | | | Area > 2.736
| | | | | | TH > −0.534: −0.784 {count = 3}
| | | | | | TH ≤ −0.534: −0.791 {count = 4}
| | | | | Area ≤ 2.736
| | | | | | TH > −0.425: −0.741 {count = 3}
| | | | | | TH ≤ −0.425
| | | | | | | PD > −0.690: −0.749 {count = 2}
| | | | | | | PD ≤ −0.690: −0.752 {count = 2}
| | | | BU ≤ −0.632
| | | | | TH > −0.566: −0.691 {count = 4}
| | | | | TH ≤ −0.566: −0.708 {count = 3}
| | | Area ≤ 0.778
| | | | TH > −0.391
| | | | | BU > −0.302
| | | | | | TH > −0.323: −0.488 {count = 2}
| | | | | | TH ≤ −0.323: −0.564 {count = 3}
| | | | | BU ≤ −0.302
| | | | | | TH > −0.363
| | | | | | | TH > −0.331: −0.261 {count = 2}
| | | | | | | TH ≤ −0.331: −0.189 {count = 2}
| | | | | | TH ≤ −0.363: −0.281 {count = 2}
| | | | TH ≤ −0.391
| | | | | BU > −0.629
| | | | | | BU > −0.325
| | | | | | | PD > −0.190
| | | | | | | | TH > −0.533: −0.587 {count = 2}
| | | | | | | | TH ≤ −0.533: −0.610 {count = 2}
| | | | | | | PD ≤ −0.190
| | | | | | | | BU > −0.280: −0.637 {count = 5}
| | | | | | | | BU ≤ −0.280: −0.658 {count = 3}
| | | | | | BU ≤ −0.325
| | | | | | | Area > −0.759
| | | | | | | | BU > −0.382: −0.387 {count = 5}
| | | | | | | | BU ≤ −0.382: −0.311 {count = 3}
| | | | | | | Area ≤ −0.759
| | | | | | | | BU > −0.575: −0.506 {count = 4}
| | | | | | | | BU ≤ −0.575: −0.541 {count = 3}
| | | | | BU ≤ −0.629
| | | | | | TH > −0.696
| | | | | | | PD > −0.641
| | | | | | | | TH > −0.483: −0.604 {count = 2}
| | | | | | | | TH ≤ −0.483: −0.625 {count = 5}
| | | | | | | PD ≤ −0.641
| | | | | | | | PD > −0.751: −0.571 {count = 4}
| | | | | | | | PD ≤ −0.751: −0.611 {count = 3}
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Table A1. Cont.

| | | | | | TH ≤ −0.696
| | | | | | | TH > −0.703: −0.650 {count = 3}
| | | | | | | TH ≤ −0.703: −0.673 {count = 4}
| | BU ≤ −0.877
| | | BU > −0.972
| | | | TH > −0.650: −0.755 {count = 3}
| | | | TH ≤ −0.650: −0.776 {count = 4}
| | | BU ≤ −0.972
| | | | BU > −1.019
| | | | | TH > −0.772
| | | | | | TH > −0.768: −0.779 {count = 3}
| | | | | | TH ≤ −0.768: −0.785 {count = 2}
| | | | | TH ≤ −0.772: −0.792 {count = 2}
| | | | BU ≤ −1.019
| | | | | TH > −0.796
| | | | | | BU > −1.065
| | | | | | | TH > −0.640: −0.796 {count = 3}
| | | | | | | TH ≤ −0.640
| | | | | | | | Area > −0.527: −0.797 {count = 4}
| | | | | | | | Area ≤ −0.527: −0.797 {count = 3}
| | | | | | BU ≤ −1.065
| | | | | | | BU > −1.069: −0.794 {count = 2}
| | | | | | | BU ≤ −1.069: −0.796 {count = 2}
| | | | | TH ≤ −0.796
| | | | | | TH > −0.815: −0.802 {count = 3}
| | | | | | TH ≤ −0.815
| | | | | | | PD > 2.167: −0.803 {count = 2}
| | | | | | | PD ≤ 2.167: −0.803 {count = 2}
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